
A Robust 2-Refinement Algorithm in Octree
and Rhombic Dodecahedral Tree Based
All-Hexahedral Mesh Generation

Yongjie Zhang1,?, Xinghua Liang1, and Guoliang Xu2

1 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

2 LSEC, Institute of Computational Mathematics, Academy of Mathematics and
System Sciences, Chinese Academy of Sciences, Beijing 100190, China

Summary. In this paper, we present a novel 2-refinement algorithm for adaptive
all-hexahedral mesh generation based on two tree structures: octree and rhombic do-
decahedral tree. Given a smooth boundary surface, we first use a pre-defined error
function to detect the main surface features, and build a strongly-balanced octree.
Then a novel 2-refinement algorithm is developed to eliminate all hanging nodes
in the octree, which is robust for any unstructured meshes and induces a smooth
transition with very little propagation. Later, all elements outside and around the
boundary are removed to create the octree core mesh and a buffer zone. The bound-
ary points on the core mesh are projected onto the surface and form the final mesh.
Motivated from nature, a new tree structure based on rhombic dodecahedron is in-
troduced. Sharp features are also detected and preserved during mesh generation.
Finally, pillowing, geometric flow and optimization-based smoothing are applied to
improve quality of the constructed meshes.

Key words: 2-refinement, all-hexahedral mesh, octree, rhombic dodecahe-
dron, sharp feature.

1 Introduction

In finite element analysis, unstructured hexahedral (hex) meshes are by far
preferred due to their superior performance over tetrahedral meshes in terms
of smaller element counts, increased accuracy and improved reliability. How-
ever, there are only a few algorithms developed in the literature for all-
hex mesh generation. Among them, sweeping [7], paving/plastering [13] and

? Corresponding author. Tel: (412) 268-5332; Fax: (412) 268-3348; Email:
jessicaz@andrew.cmu.edu (Y. Zhang).

2 Yongjie Zhang, Xinghua Liang, Guoliang Xu

whisker weaving [4] are not fully automatic and they require user interac-
tions. As a promising solution, the grid-based method is widely used due to
its robustness and effectiveness.

In the grid-based method, a fitted 3D grid of hexes using octree is con-
structed, and then additional hexes are added at the boundaries to fill gaps
[11]. 2- and 3-refinement templates were developed for adaptive mesh gener-
ation. 2-refinement uniformly subdivides a selected hex into 8 smaller ones,
while 3-refinement results in a 1-to-27 split. Due to the ease of implementa-
tion, 3-refinement templates [12, 14] were studied first. However, 3-refinement
produces much more new elements and the transition region is not so smooth
as 2-refinement [11, 12]. In addition, 2-refinement yields better aspect ra-
tio than 3-refinement. The 2-refinement method has been thoroughly studied
in 2D quadrilateral mesh generation [8, 9]. However, the implementation of
2-refinement in 3D is still a challenge. The 2-refinement method was first in-
troduced for structured hex meshes only [3, 6, 12], and was improved later
using pillowing [2]. All these developments have difficulty in handling situ-
ations where two or more refined regions are adjacent to each other. They
require a great amount of propagation and cannot deal with concavity.

In this paper, we introduce a novel 2-refinement algorithm for unstructured
all-hex meshes. Given a smooth boundary surface, four steps are designed to
construct adaptive hex meshes based on two tree structures: octree and rhom-
bic dodecahedral (RD) tree. The key contributions of our work include: (1)
a novel 2-refinement method which is robust for any unstructured meshes
and yields a smooth transition with very little propagation. 3-refinement and
2-refinement are compared in detail; and (2) a novel rhombic dodecahedral
(RD) tree structure is introduced for all-hex mesh construction. Moreover,
sharp features are preserved and the mesh quality is improved using pillow-
ing, geometric flow and optimization-based smoothing. We have applied our
algorithm to several complicated geometries. Our algorithm is able to effi-
ciently capture the main details and sharp features (if have), and generates
meshes with good quality.

The remainder of this paper is organized as follows: Section 2 explains the
detailed algorithm for octree-based hex mesh generation using 2-refinement.
Section 3 introduces a new RD tree structure. Section 4 discusses sharp feature
preservation and mesh quality improvement. Section 5 shows some application
results. Finally, Section 6 presents our conclusion.

2 Octree-Based Hex Mesh Generation

Given a closed smooth surface mesh as input, we design four steps to generate
adaptive all-hex meshes based on octree: adaptive octree construction, hang-
ing node elimination via 2-refinement, buffer zone clearance, and projection.

2-Refinement in Octree and Rhombic Dodecahedral Tree 3

2.1 Adaptive Octree Construction

As the first step, a cube is constructed which bounds the given surface
mesh. This cube is the root of the octree, as marked as level 0. Cells ob-
tained after refining the ith-level cell will be marked as level (i + 1). To
detect surface features, we introduce a feature sensitive error function [15],

ERROR =
∑27

i=1
|fi+1(P)−fi(P)|
|∇fi(P)| , where f i(P) is the distance from node P at

level i to the surface. A total of 27 nodes need to be measured for each cell.
For level i, the function values of 12 edge middle points, 6 face middle points
and 1 center point can be obtained through a trilinear interpolation. This
error function estimates the difference of the isosurface between two neigh-
boring levels. Given an error tolerance ε, we refine cells with a larger error
(> ε). In addition, to generate meshes with good aspect ratio, we limit the
level difference between two adjacent cells to be less than or equal to one. In
the end, a strongly balanced octree is obtained, see Fig. 1(a).

(a) (b)

Fig. 1. (a) A strongly balanced octree; and (b) the obtained result after pillowing.

2.2 Robust 2-Refinement for Hanging Node Elimination

Among the existing solutions, template-based methods such as 3- and 2-
refinement are the most widely used to remove hanging nodes inside the adap-
tive octree. In the 3-refinement algorithm [12, 14], each node is checked and
marked whether it needs to be refined according to a pre-defined error func-
tion. Since there are eight nodes in one hexahedron, there are 28 = 256 possible
configurations. Considering symmetry and complementary, five distinct tem-
plates were summarized [14]. Each hexahedron belonging to them are applied
with one of the templates. The remaining hexahedra are then converted to one

4 Yongjie Zhang, Xinghua Liang, Guoliang Xu

of them according to a look-up table. This conversion is repeated until no more
propagation is needed. Finally an adaptive octree without hanging nodes is
constructed. As we can see, 3-refinement is easy to implement. However, when
compared to 2-refinement which only produces 8 smaller hexahedra, a hex-
ahedron using 3-refinement will be converted to 27 smaller ones. Obviously,
3-refinement produces much more new elements and the transition region is
not so smooth as 2-refinement. In addition, 2-refinement yields better aspect
ratio than 3-refinement.

The implementation of 2-refinement in 3D is still a challenge. The main
difficulty is how to limit the propagation during hanging node elimination.
Very few work has been done and they were limited to structured meshes
only [3, 11]. One attempt for an unstructured mesh was developed in [2], but
it requires an overall refinement of all elements beforehand, which increases
the element number rapidly by 7 times. Recently, Qian and Zhang [10] at-
tempted to apply 2-refinement to unstructured meshes. In this approach, given
a uniform unstructured mesh, some core regions are defined, then three steps
are adopted: refine the core region until the requirement for 2-refinement is
satisfied, split the transition layer into two layers such that each transition
element has only one transition face, and finally remove hanging nodes. This
method can generate adaptive hex meshes from uniform unstructured ones,
and provide smooth transition layers. However, the first step of this approach
involves a great amount of propagation, which sometimes may generate more
elements than using 3-refinement. Moreover, the second step can only work
for situations where all the refined regions are isolated.

In this paper we introduce a robust 2-refinement algorithm to remove
hanging nodes in the adaptive octree, which needs very little propagation.
Here are several definitions used in the following algorithm description.

Transition element: A transition element is an element connecting elements
at two different levels.
Transition face: A transition face is a face in a transition element which is
also shared by an element at a lower level.
Transition node: A node on a transition face is named a transition node.
Non-manifold transition region: A non-manifold transition region is a re-
gion where two or more refined regions are adjacent to each other. Otherwise,
if all the refined regions are isolated, it is called a “manifold transition region”.

Before applying the 2-refinement templates introduced by Schneiders
[11, 12], as shown in Fig. 2, to unstructured all-hex meshes, we need to solve
the following two problems: (1) The coupling of transition elements. The 2-
refinement template in Fig. 2(a) is applied to a block of four transition ele-
ments sharing an edge, see Fig. 2(b). We need to ensure that there is such a
block for each transition element, especially for unstructured meshes with ar-
bitrary valence number. Then an efficient way to implement the 2-refinement
template must be developed since it has to be flipped for each pair of ele-

2-Refinement in Octree and Rhombic Dodecahedral Tree 5

(a) (b) (c)

Fig. 2. 2-refinement templates for octree [11, 12]. (a) 2-refinement templates; (b)
the way to apply 2-refinement templates; and (c) another template to remove the
remaining hanging nodes.

ments sharing a face in that block (marked as “I” and “II” in Fig. 2(b)). (2)
The concavity in the octree in which there are elements with more than one
transition face. There is no template to handle such transition elements. This
problem exists in 3-refinement methods as well.

The first problem can be easily solved by refining all the elements sur-
rounding each irregular transition node in the adaptive octree. However, it
is not so easy to solve the second one. This can be achieved by isolating the
refined region completely using the pillowing technique, which duplicates the
corresponding transition nodes for the transition elements and inserts new lay-
ers. After that, each transition element will have one and only one transition
face. The pillowing procedure duplicates each transition node along the aver-
age normal direction of its neighboring transition faces. The distance between
a node and its duplicate is half the minimum length of its neighboring edges,
as shown in Fig. 3. After the isolation of the refined regions, the template in
Fig. 2(a) is utilized to eliminate hanging nodes.

(a) (b) (c) (d)

Fig. 3. Pillowing for concave (a-b) and convex (c-d) cases. Solid nodes are nodes
on the boundary of the refined region, circles are interior to the refined region. Red
points are transition nodes, and blue points are duplicated nodes. Blue region is the
refined region, and pink region is the pillowed layer.

During pillowing, we need to pay extreme attention to non-manifold tran-
sition regions. For an octree, these non-manifold cases happen in a 8-element

6 Yongjie Zhang, Xinghua Liang, Guoliang Xu

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Pillowing for non-manifold transition regions. Colored elements are at level
i, and others are at level (i + 1). Red, blue and green points are duplicated two,
three and four times, respectively.

(a) (b)

Fig. 5. (a) Adaptive octree with hanging nodes; and (b) hanging nodes are removed
via 2-refinement.

block, in which each element may be refined (at level i + 1) or not refined
(at level i). Obviously, there are 28 = 256 possible configurations. Out of
these configurations, only the blocks with 2 ∼ 6 refined elements may have
non-manifold cases. Considering symmetry and complementary, eight distinct
cases are summarized, which can be overcome by duplicating the non-manifold
nodes, as shown in Fig. 4. Colored elements are at level i, and others are at
level (i + 1). During pillowing, we duplicate the non-manifold node m times,

2-Refinement in Octree and Rhombic Dodecahedral Tree 7

(a) (b)

(c) (d) (e)

Fig. 6. Comparison between 2- and 3-refinement. (a, b) 2-refinement method in-
troduced in [10], before (a) and after (b) removing hanging nodes. Mesh sizes are
(9,503; 7,545) and (16,052; 13,868), respectively; (c) 3-refinement, with a mesh size
of (14,278; 12,442); (d) 3-refinement with pillowing, with a mesh size of (12,141;
10,464); and (e) our 2-refinement method, with a mesh size of (10,342; 9,098). In
“(m;n)”, m is the vertex number and n is the element number. Yellow is the refined
region, and pink is the transition region. Note that the yellow region in (a) is the
initial refined region for (b-e).

8 Yongjie Zhang, Xinghua Liang, Guoliang Xu

where m is the number of refined regions surrounding it. For example, the
red, blue and green points need to be duplicated two, three and four times,
respectively. For the remaining cases, the elements at level i need to be re-
fined such that they are converted to the above solvable ones. Fig. 1(b) shows
a pillowing result in 2D, and Fig. 5 shows the adaptive octree of a head model
before and after removing hanging nodes.

As a comparison, we choose a head mesh in Fig. 6 as an example, only
refining the eyes and the nose using 2- and 3-refinement. The 2-refinement
method proposed in [10] requires an initial uniform hexahedral mesh with the
specified refined regions, as show in Fig. 6(a). The result after eliminating
all the hanging nodes is shown in Fig. 6(b). We can see that a great amount
of propagation is needed for this method (see the large yellow region), and
the resulting mesh is not symmetric. In 3-refinement, the templates can only
handle elements with one transition edge or face. If there are elements with two
or more transition faces, which normally form concavities, then a refinement
is needed and it is very easy to propagate to a large region, see the yellow
region in Fig. 6(c). This drawback can be overcome by pillowing, see Fig. 6(d),
but it will decrease the mesh quality. Fig. 6(e) is the result of our 2-refinement
method, which is the best of the five results. It can provide a smooth transition
between different levels with very little propagation. In addition, our method
introduces the fewest number of new nodes and elements.

2.3 Buffer Zone Clearance

After generating the adaptive octree, we delete elements outside or close to
the boundary surface to obtain a hexahedral core mesh. We call such a pro-
cedure buffer zone clearance. For example, if the shortest distance from any
vertex to the boundary is less than a pre-defined threshold εs, all elements
sharing this vertex are deleted. Here we choose εs = 1

2max(si), where si is the
size of the ith element sharing this vertex. To generate good-quality elements
around the boundary, we design the following two operations to improve the
boundary of the core mesh:

(a) (b) (c) (d)

Fig. 7. Buffer zone clearance and projection to the surface. (a-c) Three cases in
buffer zone clearance; and (d) the buffer layer construction.

2-Refinement in Octree and Rhombic Dodecahedral Tree 9

(1) Delete single elements which only share a point, an edge or a face with
other elements, as shown in Fig. 7(a&b). If not doing so, these elements may
induce incorrect connectivity during the following projection procedure and
hinder mesh quality improvement.

(2) Delete elements that have non-manifold connectivity on the boundary,
as shown in Fig. 7(c). Again, these elements may induce wrong connectivity
when we project boundary nodes to the surface.

2.4 Projection

As the last step, we project all the boundary points of the core mesh to the
surface. Then the buffer layer is generated by connecting the boundary points
and their corresponding projection points, see Fig. 7(d). To obtain elements
with better quality, the buffer layer can be split into two layers such that
more freedoms are provided for quality optimization later. Fig. 8(a) shows
an example of buffer zone clearance, Fig. 8(b) is the result after projection.
Obviously, the mesh quality needs to be improved (see Section 4).

(a) (b) (c)

Fig. 8. Buffer zone clearance and projection. (a) The core mesh after buffer zone
clearance; (b) the mesh after projection; and (c) the final mesh after smoothing.
Yellow is the core mesh, and pink is the two buffer layers.

3 RD-Tree Based Mesh Generation

Besides cubes, the rhombic dodecahedron (RD) in Fig. 9(a) can be used to
tessellate 3D space. The RD structure naturally exists in the world. Honey-
comb consists of tessellating cells, each of which is a hexagonal prism capped
with a half RD; some minerals like garnet form a RD crystal habit; and the
RD structure appears in the unit cells of diamond as well. As shown in Fig.
9(a), a RD has 14 nodes, 24 equilong edges and 12 rhombic faces. For all the
faces, the dihedral angle is 120◦. Moreover, by adding a center point, a RD
can be split into four identical rhombic hexahedra by two ways, as shown in
Fig. 9(b & c).

10 Yongjie Zhang, Xinghua Liang, Guoliang Xu

(a) (b) (c) (d)

Fig. 9. Rhombic dodecahedron (a) and its two decompositions (b-c). (d) A uniform
RD tree.

(a) (b) (c)

Fig. 10. The meshing results of a sphere using the RD tree. (a) The result after
buffer zone clearance; (b) the result after projection; and (c) the final mesh after
smoothing. Yellow is the core mesh, and pink is the two buffer layers.

Different from using a bounding box for the octree-based method, here
a uniform RD tree is built by tessellating RD elements to cover the whole
surface mesh, see Fig. 9(d). The RD tree is then converted to a hex tree by
splitting all the RD elements into hexes. During splitting, for each RD element
we check the valence of each vertex and choose the template in Fig. 9(b-c)
which minimizes the overall valence number for the final hex tree, see Table 1.
It is obvious that the hex tree contains a lot of irregular points with a valence
number other than eight. Fig. 10 shows the meshing results of a sphere based
on the RD tree. By comparing with Fig. 8, we can observe that using RD tree
can provide more unstructured elements with a lot of irregular nodes, and the
elements follow different orientations.

For an adaptive tree based on RD, each rhombic hex is refined based on the
feature sensitive function, and then pillowing and 2-refinement are applied to
eliminate hanging nodes in the RD-based hex tree (see Fig. 11). Note that the
RD tree is unstructured, the pillowing method in Section 2.2 cannot be directly
applied. Here a generalized method is developed. All elements at the lower

2-Refinement in Octree and Rhombic Dodecahedral Tree 11

Table 1: Statistics of valence number before and after splitting optimization.

Number of Valence 1 2 3 4 5 6 7 8 9 10 12

One-direction splitting 112 546 172 1647 0 420 0 0 60 216 1334
Optimized splitting 110 441 133 1284 35 599 47 565 19 534 740

(a) (b) (c)

Fig. 11. RD-based adaptive hex tree construction. (a) Adaptive hex tree after
pillowing and 2-refinement; and (b-c) zoom-in pictures of (a) before (b) and after
(c) pillowing and 2-refinement.

(a) (b) (c) (d)

Fig. 12. Four pillowable patches. The red node is a transition node.

level surrounding a transition node are classified into different patches based
on their connectivity, such that each patch is manifold. Four kinds of patches,
as shown in Fig. 12, can be pillowed easily. The remaining situations need
to be refined to make them pillowable. This procedure induces propagation
in the RD tree. When pillowing is done, 2-refinement templates are applied
to eliminate all the hanging nodes, see Fig. 11(c). The following buffer zone
clearance and projection procedures are similar to the octree-based method.
Fig. 13 shows two adaptive all-hex meshes of the head model based on the
octree and the RD tree, respectively.

12 Yongjie Zhang, Xinghua Liang, Guoliang Xu

(a) (b)

Fig. 13. Adaptive all-hex meshes of the head model. (a) The octree-based method;
and (b) the RD tree based method.

Remark: For both octree and the RD tree, our 2-refinement algorithm in-
troduces very little propagation in eliminating hanging nodes. This is because
the pillowing method can efficiently isolate transition faces, and thus it is able
to handle non-manifold transition regions. From these two tree structures, we
can observe that our 2-refinement algorithm is robust for not only structured
meshes but also unstructured ones with a lot of irregular nodes.

4 Sharp Feature Preservation and Quality Improvement

A lot of input surface meshes, such as CAD models, contain sharp features
which are important and cannot be neglected. The sharp feature preservation
algorithm has been proposed in [10]. We suppose all the sharp features are
provided along with the given surface mesh, see Fig. 14(a). We firstly identify
each joint point Pjoint shared by multiple sharp curves, and find the closest
node in the generated mesh. Each sharp curve has two joint points, Pstart and
Pend. A shortest path is found between them using Dijkstra’s algorithm [1],
and then each node on this path is projected to the sharp curve. Three criteria
are used to set the priority: (1) For sharp curves, the longer one is preserved
first; (2) for joint points, the node whose adjacent edge forms a smaller angle
to the sharp curve is preferred; and (3) for nodes on the path, the node with a
minimal projection distance is chosen. Fig. 14 shows a result for sharp feature
preservation.

2-Refinement in Octree and Rhombic Dodecahedral Tree 13

(a) (b)

(c) (d)

Fig. 14. Sharp feature preservation for the hook model. (a) The input sharp curves,
and the generated smooth mesh using the octree-based method in Section 2; (b) the
final mesh with sharp feature preservation; (c) cross section of the final mesh based
on octree; and (d) cross section of the final mesh based on the RD tree.

Quality improvement is important for mesh generation. Here we choose
the scaled Jacobian to measure the mesh quality [16]. For each node x in
a hex, three edge vectors are defined as ei = xi − x (i = 1, 2, 3). Then the
Jacobian matrix is defined as J = [e1, e2, e3], and Jacobian is defined as
Jacobian(x) = det(J). If e1, e2 and e3 are normalized, det(J) is also called the
scaled Jacobian. For mesh quality improvement, geometric flow is first applied
to improve the overall quality of the mesh [16, 17]. Then, optimization-based
smoothing is adopted to improve the worst quality element of the mesh [5].
The combination of geometric flow and optimization-based smoothing can
generally result in good-quality for smooth hexahedral meshes. However, for

14 Yongjie Zhang, Xinghua Liang, Guoliang Xu

meshes with sharp features, pillowing [10] is required which can guarantee that
there are no element with more than two edges lying on the sharp curves, and
no element with more than one face lying on the same surface patch.

5 Results and Discussion

Several models are used to test our algorithm, including two smooth head
models, see Figs. 13 & 15, the Buddha, see Fig. 16, and three CAD models
with sharp features, see Figs. 14, 17 and 18. We use both the octree and the
RD tree to generate adaptive all-hex meshes so that we can compare these
two different tree structures. Our results were computed on a PC equipped
with a 2.93 GHz Intel X3470 CPU and 8GB of Memory.

Statistics of these meshes are given in Table 2. After applying quality
improvement techniques, all the hexahedral meshes are in reasonable good
quality. The pillowing plus 2-refinement algorithm is applied to all the models.
Although there are various kinds of non-manifold transition regions in these
meshes, our approach is able to handle all of them with only a small amount
of propagation. Moreover, the results also indicate that our feature sensitive
function can effectively capture important features on the surface, such as the
nose and eyes in these two head models.

Our algorithm also works for CAD models, as shown in Figs. 14, 17 and
18. For CAD models, we restrict the surface meshes to be uniform and only
the interior region of these models are adaptive. Because pillowing is adopted
in our algorithm, every surface element in these meshes has at most two edges
lying on the same curve, and at most one surface lying on the same surface
patch, which leads to good quality meshes.

By comparing the octree-based and RD tree based methods, we can ob-
serve that octree provides more structured elements, and the transition be-
tween two different levels are smoother. Therefore, the octree-based meshes
are preferred in finite element analysis. However, the RD tree may be better
for some specific applications. For example, the RD tree structure can better
represent the honeycomb and some minerals like garnet.

6 Conclusions

In this paper, we present a novel algorithm which can generate unstruc-
tured adaptive all-hex meshes using two tree structures and 2-refinement.
For any given smooth surface, four steps are designed to construct adap-
tive hex meshes with reasonable good quality. Compared to 3-refinement and
other 2-refinement approaches, our 2-refinement method introduces very little
propagation and is capable of handling complicated non-manifold transition
regions. Moreover, a new RD tree structure is introduced besides the octree.

2-Refinement in Octree and Rhombic Dodecahedral Tree 15

(a) (b)

Fig. 15. Adaptive all-hex meshes of the Igea model. (a) The octree-based method;
and (b) the RD tree based method.

(a) (b)

Fig. 16. Adaptive all-hex meshes of the Buddha model. (a) The octree-based
method; and (b) the RD tree based method.

16 Yongjie Zhang, Xinghua Liang, Guoliang Xu

(a) (b)

Fig. 17. Adaptive all-hex meshes of the Hook2 model. (a) The octree-based method;
and (b) the RD tree based method.

(a) (b)

Fig. 18. Adaptive all-hex meshes of the Varco3 model. (a) The octree-based method;
and (b) the RD tree based method.

2-Refinement in Octree and Rhombic Dodecahedral Tree 17

Table 2: Mesh statistics of the resulting models.

Model Method
Mesh Size Scaled Jacobian Time

(vertex; element) [worst; best] (s)

Head
Octree (64,258; 56,419) [0.013; 1.0] 169

RD tree (51,985; 45,336) [0.016; 1.0] 95

Igea
Octree (110,352; 98,087) [0.023; 1.0] 237

RD tree (74,012; 65,198) [0.017; 1.0] 122

Buddha
Octree (105,887; 93,193) [0.017; 1.0] 871

RD tree (200,259; 175,037) [0.012; 1.0] 1920

Hook
Octree (28,426; 25,563) [0.012; 1.0] 14

RD tree (34,709; 28,624) [0.013; 1.0] 21

Hook2
Octree (33,296; 30,212) [0.011; 1.0] 17

RD tree (21,377; 17,616) [0.013; 1.0] 35

Varco3
Octree (53,646; 48,516) [0.011; 1.0] 38

RD tree (49,901; 42,064) [0.015; 1.0] 92

For CAD models, sharp features are preserved. Finally, mesh quality is im-
proved. In the future we will test more models to make our code more robust
and efficient.

Acknowledgements

This research was supported in part by Y. Zhang’s ONR-YIP award N00014-
10-1-0698 and an AFOSR grant FA9550-11-1-0346, which are gratefully ac-
knowledged.

References

[1] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[2] M. S. Ebeida, A. Patney, J. D. Owens, and E. Mestreau. Isotropic con-
forming refinement of quadrilateral and hexahedral meshes using two-
refinement templates. Int. J. Numer. Meth. Engng, 88(10):974–985, 2011.

[3] J. Edgel. An adaptive grid-based all hexahedral meshing algorithm based
on 2-refinement. In MS Thesis, Brigham Young University, 2010.

[4] N. Folwell and S. Mitchell. Reliable whisker weaving via curve contrac-
tion. Eng. Comput., 15(3):292–302, 1999.

18 Yongjie Zhang, Xinghua Liang, Guoliang Xu

[5] L. A. Freitag. On combining Laplacian and optimization-based mesh
smoothing techniques. Trends in Unstructured Mesh Generation, ASME,
220:37–43, 1997.

[6] Y. Ito, A. Shih, and B. Soni. Octree-based reasonable-quality hexahedral
mesh generation using a new set of refinement templates. Int. J. Numer.
Methods Eng., 77(13):1809–1833, 2009.

[7] P. M. Knupp. Next-generation sweep tool: a method for generating
all-hex meshes on two-and-one-half dimensional geometries. In 7th Int.
Meshing Roundtable, pages 505–513, 1998.

[8] X. Liang, M. Ebeida, and Y. Zhang. Guaranteed-quality all-quadrilateral
mesh generation with feature preservation. Comp. Meth. Appl. Mech.
Engr., 199(29–32):2072–2083, 2010.

[9] X. Liang and Y. Zhang. Hexagon-based all-quadrilateral mesh genera-
tion with guaranteed angle bounds. Comp. Meth. Appl. Mech. Engr.,
accepted, 2011.

[10] J. Qian and Y. Zhang. Automatic unstructured all-hexahedral mesh
generation from B-Reps for non-manifold CAD assemblies. Engineering
with Computers, DOI: 10.1007/s00366-011-0232-z, 2012.

[11] R. Schneiders. Refining quadrilateral and hexahedral element Meshes. In
5th Int. Meshing Roundtable, pages 383–398, 1996.

[12] R. Schneiders, R. Schindler, and F. Weiler. Octree-based generation of
hexahedral element meshes. In 5th Int. Meshing Roundtable, pages 205–
216, 1996.

[13] M. L. Staten, R. A. Kerr, S. J. Owen, and T. D. Blacker. Unconstrained
paving and plastering: progress update. In 15th Int. Meshing Roundtable,
pages 469–486, 2006.

[14] Y. Zhang and C. Bajaj. Adaptive and quality quadrilateral/hexahedral
meshing from volumetric Data. Comput. Meth. Appl. Mech. Eng., 195(9–
12):942–960, 2006.

[15] Y. Zhang, C. Bajaj, and B.-S. Sohn. 3D finite element meshing from
imaging data. Comput. Meth. Appl. Mech. Eng., 194(48–49):5083–5106,
2005.

[16] Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improve-
ment of quadrilateral/hexahedral meshes with geometric flow. Commun.
Numer. Meth. Eng., 25(1):1–18, 2009.

[17] Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation
models of biomolecular structures. Computer Aided Geometric Design,
23(6):510–530, 2006.

